8 Marzo 2024

No profit analytics: come i dati possono supportare la mission?

Le organizzazioni non profit devono affrontare sfide complesse per raggiungere la propria mission, spesso operando con risorse limitate e budget ristretti. In queste circostanze, prendere decisioni strategiche diventa fondamentale per massimizzare l'impatto delle proprie iniziative. È qui che emerge il potere dei dati per le organizzazioni non profit.

Sfruttando il potenziale dei dati, le organizzazioni non profit possono comprendere meglio le loro operazioni, misurare le prestazioni e promuovere un cambiamento d'impatto.

Perché i dati sono essenziali per le non profit?

Le organizzazioni non profit possiedono una grande quantità di dati, dalle informazioni sui donatori ai risultati delle iniziative e campagne di fundraising. Attraverso l'analisi dei dati, possono scoprire tendenze e modelli che possono aiutare a migliorare le iniziative strategiche e le performance. Tuttavia, senza gli strumenti e le strategie giuste, questi dati possono diventare difficili da utilizzare in modo efficace.

In particolare, i dati sono utili per:

  1. Ottimizzazione delle risorse: Le organizzazioni no profit spesso operano con risorse limitate. L'analisi dei dati consente loro di ottimizzare l'utilizzo di queste risorse, identificando i settori in cui possono massimizzare l'impatto dei loro sforzi e investimenti.
  2. Valutazione dell'efficacia: I dati forniscono alle no profit una misurazione obiettiva dell'efficacia dei loro programmi e delle loro iniziative. Questa valutazione aiuta a identificare cosa funziona e cosa può essere migliorato, consentendo loro di adattare le loro strategie di conseguenza per massimizzare l'impatto sociale.
  3. Sviluppo della strategia: L'analisi dei dati fornisce alle no profit una comprensione approfondita delle tendenze, dei bisogni e delle sfide nella loro area di intervento. Questa conoscenza informa lo sviluppo di strategie a lungo termine per affrontare le questioni sociali in modo efficace ed efficiente.

Quali sono i principali benefici dell'analytics per le no profit?

Misurazione degli impatti

Uno dei principali vantaggi dell'analisi è la capacità di misurare le performance e l'impatto. Tracciando le metriche chiave e analizzando i dati, le organizzazioni non profit possono ottenere informazioni sulle loro operazioni e valutare i contributi alla loro missione. Per esempio, un'organizzazione non profit che si occupa di fornire istruzione ai bambini svantaggiati può monitorare metriche come i tassi di iscrizione, la frequenza e il rendimento accademico per valutare l'efficacia dei propri programmi. Analizzando questi dati si possono identificare le aree di miglioramento e prendere decisioni basate per migliorare l'impatto delle attività dell'organizzazione.

Comprendere i comportamenti dei donatori

Le donazioni giocano un ruolo cruciale nel finanziamento delle attività delle organizzazioni non profit, rendendo essenziale la comprensione delle tendenze e dei comportamenti dei donatori. L'analisi delle organizzazioni non profit consente alle organizzazioni di ottenere informazioni sulle preferenze dei donatori, permettendo loro di adattare le strategie di raccolta fondi e di migliorare la fidelizzazione dei donatori.

Analizzando i dati dei donatori, le organizzazioni non profit possono identificare i modelli di donazione, come gli importi preferiti o i canali di raccolta fondi più efficaci. Queste informazioni possono essere utilizzate per campagne di raccolta fondi mirate, aiutando le organizzazioni non profit a raggiungere gli obiettivi di raccolta fondi in modo più efficiente.

Migliorare l'efficienza

I dati possono contribuire anche a migliorare l'efficienza operativa. Analizzando i dati relativi alle spese, all'allocazione delle risorse e ai risultati dei programmi, le organizzazioni possono identificare le opportunità per snellire le operazioni e ottimizzare l'utilizzo delle risorse.

Ad esempio, le organizzazioni non profit possono analizzare i dati sulle spese e sui risultati dei programmi per identificare le iniziative più efficaci dal punto di vista dei costi e dell'impatto. Questa conoscenza consente di prendere decisioni informate sull'allocazione delle risorse, assicurando che le risorse limitate siano utilizzate in modo efficace.

Qui trovi per esempio un caso studio di un progetto realizzato con AIRC di matching bonifici per l'attribuzione delle campagne che oltre a permettere di misurare l'impatto delle iniziative ha permesso anche di diminuire il tempo perso in attività manuali.

Per concludere: da dove cominciare con gli analytics per le no profit?

Sfruttare a pieno di dati all'interno delle organizzazioni no profit è fondamentale per massimizzare l'impatto e raggiungere gli obiettivi sociali.
Definendo gli obiettivi, implementando solide pratiche di gestione dei dati e sfruttando gli strumenti giusti, le organizzazioni non profit possono sfruttare appieno il potenziale dell'analisi dei dati per portare avanti le loro missioni.

Grazie ai dati le organizzazioni non profit possono massimizzare l'efficienza, migliorare le prestazioni e fare davvero la differenza nelle comunità in cui operano.

Se vuoi massimizzare il valore dei dati per la tua organizzazione qui trovi maggiori informazioni.

1 Febbraio 2024

Google Consent Mode: tutto quello che c’è da sapere per marzo 2024

Il Google Consent Mode è una risposta alla perdita di controllo e visibilità delle performance delle campagne pubblicitarie. Google ha introdotto questo strumento per preservare la misurazione delle performance online e l’integrazione tra Google Analytics 4 e Google Ads, utilizzando un approccio privacy-first. Attraverso algoritmi di machine learning, il Consent Mode promette di recuperare oltre il 70% dei percorsi da clic a conversioni persi a causa del mancato consenso degli utenti.

La versione successiva, Consent Mode V2, rilasciata a novembre 2023, diventa una scelta obbligata entro marzo 2024 per chi vuole utilizzare le audience di Google Analytics 4: senza l'aggiornamento infatti non sarà più possibile creare, aggiornare o importare audience da Google Analytics 4 a Google Ads, limitando le attività di remarketing. L'implementazione corretta del Consent Mode V2 permette una maggiore trasparenza nella gestione della privacy mantenendo invariate le performance di advertising attraverso stime realistiche di conversioni.

Cos’è il Consent Mode

Senza accettazione dei cookie da parte degli utenti, chi fa pubblicità perde controllo e visibilità sulle performance delle campagne: non è più possibile infatti collegare le interazioni con gli annunci alle conversioni, sia che si tratti di visitatori abituali, sia che gli utenti provengano da fonti di traffico organico o a pagamento. Per colmare questa lacuna, Google ha introdotto il Consent Mode, che aiuterà chi fa marketing a preservare la misurazione delle performance online e l’integrazione tra Google Analytics 4 e Google Ads, utilizzando un approccio privacy-first.

L'idea alla base del Google Consent Mode è quella di raccogliere dati anonimizzati (da utenti che non forniscono il consenso ai cookies) per stimare il traffico reale del sito web e per recuperare l’attribuzione delle conversioni da Google Ads utilizzando algoritmi di machine learning. Infatti la promessa di Google è che il Consent Mode permetterebbe di recuperare oltre il 70% dei percorsi da clic a conversioni persi a causa del mancato consenso degli utenti.

Il Consent Mode attraverso algoritmi di machine learning analizza i dati e le tendenze storiche per quantificare la relazione tra utenti che hanno fornito e che non hanno fornito consenso. In questo modo recupera in maniera probabilistica i collegamenti tra le interazioni con gli annunci e le conversioni che altrimenti non verrebbero attribuite: questo significa avere maggiori informazioni sulle conversioni per ottimizzare le campagne e capire cosa sta contribuendo alle vendite. 

Che cos’è Consent Mode V2 e cosa succede a marzo 2024?

Google ha rilasciato a Novembre 2023 il Google Consent Mode V2, la cui adozione diventa obbligatoria per chi vuole continuare ad utilizzare le audience di Google Analytics 4 da Marzo 2024, con l’entrata in vigore del nuovo Digital Markets Act che ha l’obiettivo di garantire maggiore privacy e trasparenza sul consenso degli utenti all’interno dell’Unione Europea.

L’upgrade alla nuova versione è praticamente un'attività "obbligatoria" per chi fa campagne poiché senza la v2 del Consent Mode non sarà più possibile creare, aggiornare ed importare audience da Google Analytics 4 verso Google Ads, limitando drasticamente le attività di remarketing.

Entro marzo 2024 Google richiede di implementare due nuovi indicatori all’interno delle configurazioni di Consent Mode che andranno ad impattare la creazione di audience e il remarketing:

  • ad_personalization: relativo all’utilizzo dei dati per pubblicità personalizzata
  • ad_user_data: relativo all’invio dei dati utente proprietari

Da marzo 2024 senza l’integrazione o l’aggiornamento di Consent Mode v2 rimarrà comunque possibile visualizzare le conversioni degli utenti che hanno acconsentito alla profilazione ma non sarà più possibile creare, aggiornare ed importare audiences in Google Ads da Google Analytics 4, causando limitazioni e cali nelle performance delle campagne di advertising. 

Cosa bisogna fare?

Se non si è ancora implementata la nuova versione del Google Consent Mode è necessario adeguarsi entro marzo 2024.

I più popolari CMP forniscono una serie di indicazioni sull’integrazione, ma il supporto di Digital Pills è fondamentale per una corretta implementazione e per sfruttare al massimo le potenzialità del Consent Mode.

Benefici

  1. Maggiore trasparenza nella gestione della privacy: Google Consent Mode V2 aiuta a garantire la conformità con le normative sulla privacy e con il nuovo Digital Markets Act.
  2. Possibilità di continuare a creare, aggiornare e importare audience da Google Analytics 4 a Google Ads, permettendo di conseguenza di mantenere invariate le performance di advertising.
  3. Grazie all’algoritmo di Google, la stima delle conversioni recuperate attraverso il “modeling” è realistica, soprattutto per quei siti web con alti volumi di traffico.
  4. Se correttamente implementato e mantenuto il Consent Mode si integra perfettamente con Google Tag Manager (client-side e server-side) permettendo una gestione e verifica del consenso rapida e snella.

Vuoi una mano?

Contattaci per una chiacchierata compilando questo form e scopri come possiamo aiutarti

23 Gennaio 2024

Dati e omnicanalità nel 2024: sfide e use case

Nel 2024 l'omnicanalità emerge come cruciale nell'ambito del marketing e dell'e-commerce nel settore retail. La digitalizzazione accelerata e l'evoluzione delle aspettative dei consumatori impongono alle aziende di adottare strategie che integrino sinergicamente i canali online e offline. 

Il consumatore moderno si sposta fluidamente tra dispositivi e canali, richiedendo un'esperienza coerente attraverso tutto il journey.  L'omnicanalità si pone come risposta strategica a questa esigenza, garantendo coerenza, personalizzazione e connessione in ogni fase del percorso del cliente.

L'approccio omnicanale pone il cliente al centro, offrendo una visione unificata e personalizzata del brand indipendentemente dal canale scelto, sia esso online o offline.

Quali sono i vantaggi di una strategia omnicanale?

  • Esperienza cliente coerente: ciò significa che i clienti possono iniziare l'interazione su un canale e proseguire senza intoppi su un altro, mantenendo una coerenza e una fluidità che generano fiducia e soddisfazione. Questa coerenza contribuisce a un'esperienza positiva, migliorando l'engagement e stimolando la fedeltà del cliente.
  • Raccolta dati integrata che consente di ottenere una visione completa del comportamento del cliente. L'analisi di dati provenienti da diversi touchpoint fornisce insight approfonditi, facilitando decisioni informate e strategie più mirate.
  • Aumento dell'engagement: raccogliendo dati da tutti i touchpoint, è possibile personalizzare le interazioni, offrendo promozioni mirate, suggerimenti di prodotti e contenuti rilevanti.
  • Coerenza del brand: indipendentemente dal canale scelto, l'esperienza offerta riflette la stessa identità aziendale, messaggi di brand e standard di servizio. Questa uniformità rafforza la percezione del brand e consolida la fiducia.
  • Fidelizzazione: offrire un'esperienza coerente e personalizzata ai clienti crea un legame più stretto. La fidelizzazione è favorita da una maggiore soddisfazione del cliente, da interazioni più pertinenti e da una facilità di utilizzo che incide positivamente nel lungo periodo. 

Quali sono le sfide di una strategia omnicanale?

  • Dati in silos: i dati dispersi in silos tra diversi reparti o sistemi possono ostacolare la coerenza e la completezza delle informazioni. Unire fonti di dati eterogenee è cruciale per ottenere una visione unificata del cliente e garantire una gestione omnicanale basata su dati integrati.
  • Tecnologia: la selezione di una stack tecnologica adatta è una sfida critica. Dovrebbe integrare e supportare tutti i canali, garantendo la raccolta e l'analisi efficace dei dati. Una scelta inadeguata può portare a inefficienze operative e ostacolare l'integrazione dei canali.
  • Competenze: l'implementazione di una strategia omnicanale può richiedere nuove competenze e know-how, sia in termini di gestione dati che di utilizzo di tecnologie avanzate.
  • Nuovo modo di organizzare l'azienda: l’'adozione dell'omnicanalità spesso richiede una ristrutturazione organizzativa. L'azienda deve adottare una mentalità più collaborativa e coesa, superando le tradizionali divisioni tra reparti e garantendo un flusso di informazioni efficiente.

L’importanza di un approccio data driven all’omnicanalità

Un approccio data-driven all'omnicanalità consente la personalizzazione dell'esperienza del cliente basandosi sui dati e non su intuizioni o assunzioni. Inoltre offre una base solida per decisioni informate e strategie efficaci, permettendo di adattarsi rapidamente alle dinamiche del mercato in evoluzione. 

Permette di ottimizzare l'efficienza operativa, identificando tendenze emergenti e consentendo una risposta tempestiva a nuove sfide o opportunità. Infine promuove l'ottimizzazione dei canali di vendita, concentrando le risorse sui canali più performanti e aumentando il ritorno sull'investimento complessivo delle iniziative omnicanale.

Dati e omnicanalità nel 2024: sfide e use case

Abbiamo raccolto in un report gratuito le nostre riflessioni sull'omnicanalità nel 2024 e soprattutto 4 use case pratici di analisi e attivazione dei dati in ottica omnichannel.

29 Novembre 2023

Marketing Analytics, Product Analytics e Customer Analytics: facciamo chiarezza

Nel panorama del business digitale la comprensione e l'utilizzo dell'analisi dei dati sono fondamentali per il successo strategico. Per i responsabili marketing, di ecommerce e di prodotto, comprendere le differenze tra customer analytics, marketing analytics e product analytics è essenziale per prendere decisioni informate. In questo articolo esploreremo le potenzialità di ciascuno di questi filoni, cercando di evidenziare le principali differenze, illustrando i Key Performance Indicator più importanti per ognuno, fornendo esempi di analisi e elencando gli strumenti che possono essere alleati nella raccolta e analisi dei dati.

Che cos'è Marketing Analytics?

Marketing analytics consiste nel misurare, gestire e analizzare le performance delle attività per ottimizzare le strategie marketing. Si focalizza sull'efficacia delle campagne pubblicitarie, sull'acquisizione di clienti e sulla valutazione del ritorno sull'investimento (ROI) delle attività di marketing. A differenza di altre forme di analisi, il marketing analytics si concentra specificamente sugli sforzi promozionali.

Benefici:

  • Ottimizzazione delle campagne pubblicitarie.
  • Miglioramento dell'acquisizione e conversione dei clienti.
  • Massimizzazione del ROI attraverso analisi e insight.

KPI:

  1. Tasso di Conversione (CR): Misura la percentuale di utenti che completano azioni desiderate.
  2. Costo per Acquisizione (CPA): Indica il costo per acquisire un nuovo cliente.
  3. Ritorno sugli Investimenti (ROI): Valuta l'efficacia di una campagna rispetto agli investimenti.

Strumenti:

  • Google Analytics
  • Piwik PRO
  • Adobe Analytics
  • Piano Analytics

Product Analytics: che cos'é?

La product analytics si concentra sull'osservazione e sull'interpretazione del comportamento degli utenti all'interno di un'applicazione o di un prodotto specifico. Questo tipo di analisi mira a fornire una visione dettagliata sull'usabilità, sull'esperienza utente e sulle funzionalità del prodotto. Misurando metriche come il tasso di conversione del funnel, la retention degli utenti e il tempo trascorso nell'app, le aziende possono identificare le aree di miglioramento e ottimizzare le caratteristiche del prodotto.

Benefici:

  • Ottimizzazione dell'usabilità.
  • Aumento della retention degli utenti.
  • Miglioramento delle caratteristiche del prodotto basato sul comportamento degli utenti.

KPI:

  1. Retention Rate: Misura la percentuale di utenti che ritornano.
  2. Tempo nell'App: Indica la durata dell'interazione dell'utente con il prodotto.
  3. Tasso di Adozione delle Funzionalità: Misura la velocità di adozione delle nuove funzionalità.
  4. Churn Rate: Valuta la percentuale di utenti che smettono di utilizzare il prodotto.

Strumenti:

Che cos'è la Customer Analytics?

Definizione e Differenze:

La customer analytics è incentrato sull'analisi del comportamento dei clienti, mirando a comprendere esigenze, preferenze e interazioni. Questa analisi è cruciale per migliorare l'esperienza del cliente e la fedeltà.

Benefici:

  • Personalizzazione delle interazioni con i clienti.
  • Miglioramento dell'esperienza del cliente.
  • Aumento della retention e del valore a vita del cliente.

KPI:

  1. Valore a Vita del Cliente (CLV): Indica il valore previsto che un cliente porterà nel corso della sua vita.
  2. Net Promoter Score (NPS): Misura la propensione dei clienti a consigliare l'azienda.

Strumenti:

Conclusione

L'orchestrazione tra marketing analytics, customer analytics e product analytics diventa sempre più cruciale per assicurare un successo digitale a lungo termine. Pianificare una strategia basata sui dati non è un'impresa semplice: Digital Pills offre le competenze per aiutarti ad attraversare le sfide complesse e allineare i tuoi obiettivi con dati e insight utili. Puoi contattarci per avere maggiori informazioni oppure iscriverti alla newsletter: ogni due settimane, di giovedì, condividiamo case studies e novità utili per chi vuole crescere con i dati.

16 Novembre 2023

E-commerce analytics: cos’è e come usarla per far crescere il business

Nota: questo articolo è una traduzione e rielaborazione di un articolo del nostro partner Piwik PRO, qui trovi la versione originale.

Perché parliamo di e-commerce analytics

Il tasso medio di abbandono del carrello per gli acquisti online supera il 70%. Questa rappresenta una sfida enorme per gli e-commerce: come si possono raggiungere efficacemente gli utenti portarli a convertire? Un elemento cruciale sono i dati raccolti da uno strumento di analisi dell'ecommerce.

Le aziende e-commerce hanno bisogno di prendere decisioni basate sui dati per comprendere meglio le azioni dei clienti e favorire la crescita e i profitti. I
Come? Raccogliendo i dati giusti, ricavandone informazioni granulari sul pubblico e usare queste informazioni per prendere delle azioni specifiche. L'e-commerce analytics consiste proprio in questo.

In questo articolo spieghiamo come sfruttare l'e-commerce analytics per creare campagne più efficaci, aumentare le vendite e rafforzare il posizionamento del vostro marchio.

Cosa significa e-commerce analytics?

L'analisi dell'e-commerce comporta la scoperta, l'interpretazione e la comunicazione di modelli di dati relativi al business online. Questo processo comporta il monitoraggio di una serie di metriche relative al percorso del cliente dalla A alla Z, tra cui la scoperta, l'acquisizione, la conversione, la fidelizzazione e l'advocacy.

Analizzando i dati provenienti da più fonti, le aziende di e-commerce possono ottenere informazioni sull'andamento del proprio negozio, identificare le aree di miglioramento e prendere decisioni basate sui dati per ottimizzare le vendite online e gli sforzi di marketing.

Quali tipi di dati si possono tracciare con l'e-commerce analytics?

È possibile utilizzare l'e-commerce analytics per tracciare una serie di informazioni sugli utenti:

Audience

Raccogliere informazioni per ottenere approfondimenti sui dati demografici del pubblico, come ad esempio:

  • Sesso
  • Età
  • Posizione geografica
  • Lingue parlate
  • Dispositivo

Ottenere una visione delle customer persona sulla base dei dati consente di determinare i punti dolenti da affrontare, apportando miglioramenti alle iniziative di marketing.

Acquisition

I dati sull'audience vi informano su come i visitatori vengono a conoscenza della vostra attività e su come finiscono sul vostro sito web.

Ecco alcune metriche da tenere a mente in relazione all'acquisizione dei clienti:

  • Click-through Rate (CTR)
  • Costo per lead (CPL)
  • Costo per acquisizione (CPA)

Utilizzando i dati di acquisizione, potrete scoprire quali sono i canali di marketing che generano più traffico e che portano al maggior numero di conversioni e vendite. Potete anche vedere quali sono i canali di marketing online più efficaci e quali quelli che non funzionano. Questi dati sono fondamentali per capire dove concentrare le risorse.

Behavior

Un altro tipo di dati da analizzare è il comportamento dei clienti dopo che sono arrivati sul vostro sito e-commerce. Gli approfondimenti sul comportamento dei clienti vi aiutano a capire i percorsi che i visitatori compiono di solito quando interagiscono con il vostro negozio online e a capire quanto siano in linea con le azioni che volete che completino.

Ecco alcune domande che potete porvi per avere un'idea del comportamento dei vostri clienti:

  • Quali prodotti acquistano i clienti alla fine della loro sessione?
  • Quanti visitatori abbandonano subito il vostro sito web?
  • Quali sono le pagine che gli utenti visitano per prime dopo essere arrivati sul vostro sito?
  • Quali sono i contenuti di marketing più visitati dagli utenti?
  • Quali prodotti ricevono molto traffico ma poche vendite?
  • Quanto tempo trascorrono in media gli utenti sul vostro sito?
  • L'analisi del comportamento vi aiuta a scoprire quali aspetti del vostro negozio potete migliorare per aumentare i tassi di coinvolgimento e i livelli di conversione.

Se i visitatori abbandonano rapidamente le pagine del vostro sito e non interagiscono con esse, dovete indagare sulle possibili cause, ad esempio:

  • Le pagine si caricano lentamente.
  • Il sito web o i prodotti non soddisfano le aspettative del pubblico.
  • Il negozio online è difficile da navigare o la sua offerta o i suoi contenuti sono confusi.

Conversions

Di seguito alcune metriche che danno un'idea delle vendite, del loro valore e di quali campagne di conversione devono essere migliorate:

  • Tasso di conversione delle vendite
  • Valore medio dell'ordine (AOV)
  • Tasso di abbandono del carrello
  • Fatturato
  • Costo per acquisizione
  • Ritorno sulla spesa pubblicitaria

Quando iniziate a scavare più a fondo nei dati che avete a disposizione, potrete scoprire:

  • Quanto tempo impiega un utente tipico a convertirsi in un cliente pagante?
  • Con quale frequenza i clienti tendono a convertirsi?
  • Di quante visite hanno bisogno i clienti prima di effettuare il primo acquisto?
  • I clienti effettuano acquisti ripetuti?
  • Quanti clienti abbandonano il carrello invece di convertire?

Rispondere a queste informazioni vi aiuterà a determinare come modificare la vostra comunicazione di marketing per coinvolgere efficacemente i clienti esistenti e potenziali.

Privacy compliance ed e-commerce analytics

La salvaguardia dei dati dei clienti e il rispetto della loro privacy sono diventati un nuovo standard. L'enfasi sulla privacy e sulla sicurezza deriva dal numero crescente di normative sulla privacy dei dati, dalla maggiore consapevolezza dei consumatori e dalla crescente applicazione delle normative.

Normative sulla privacy nell'e-commerce
Il punto focale delle normative sulla privacy dei dati è il trattamento dei dati personali e la protezione della privacy dei consumatori online. Poiché il vostro e-commerce tratti regolarmente tutti i tipi di dati personali, è necessario comprendere e rispettare le leggi applicabili. Verificate quali sono le normative applicabili alla vostra attività, sia che si tratti di leggi che riguardano paesi specifici, come il TTDSG tedesco o le linee guida del CNIL francese, sia che si tratti di leggi con un'applicazione più ampia, come il GDPR.

Cambiamenti tecnologici orientati alla privacy
Il panorama dell'e-commerce è influenzato anche da cambiamenti tecnologici. L'evento più rilevante è la fine delle campagne pubblicitarie di retargeting come le conosciamo, a causa della deprecazione dei cookie di terze parti.

Per adeguarsi ai cambiamenti tecnologici che riguardano la privacy, è bene adottare le seguenti misure:

  • Scegliere fornitori di tecnologia attenti alla privacy che costruiscono i loro strumenti secondo i principi della privacy by design e della privacy by default.
  • Assicuratevi che gli strumenti che utilizzate offrano funzioni che vi consentano di rispettare le scelte dei visitatori o di anonimizzare i dati.
  • Privilegiate le fonti di dati di prima parte, ovvero raccogliete i dati utilizzando le vostre fonti.

Best practice per e-commerce analytics

Decidete quali sono le vostre esigenze e i vostri obiettivi
L'obiettivo principale del team di marketing deve essere collegato agli obiettivi aziendali generali. Stabilire gli obiettivi prima di immergersi nelle analisi è il modo migliore per garantire che il team lavori per un obiettivo comune. Inoltre, aumenta le probabilità di raggiungere i Key Performance Indicator (KPI).

Tracciare i dati dei clienti attraverso diversi punti di contatto
Raccogliete tutti i dati di marketing sparsi su piattaforme e canali e standardizzateli per assicurarvi che siano aggiornati e coerenti. Questo rappresenta un'opportunità per le aziende di fornire ai clienti un viaggio senza soluzione di continuità attraverso diversi touchpoint o canali di marketing, tra cui mobile, web e social media. Man mano che il vostro stack di marketing si espande, la presenza di tutti i dati in un unico luogo vi consentirà di avere un quadro chiaro del comportamento dei vostri utenti per individuare le aree di miglioramento.

Implementare la giusta data stack
Una data stack integrata contribuirà a migliorare l'accuratezza dei dati e a migliorare il processo decisionale. Assicuratevi che la vostra configurazione soddisfi le esigenze dei vostri team, non richieda troppe risorse e vi aiuti a raggiungere i vostri obiettivi di marketing e di business.

Unisci i puntini tra i tuoi clienti e i dati
Gli strumenti di marketing spesso forniscono una quantità eccessiva di dati: non cadete nella trappola di raccogliere semplicemente quanti più dati possibile. È necessario avere uno scopo per ogni dato raccolto. I dati diventano preziosi quando si mettono in relazione i numeri con i clienti. Se si considerano i dati in modo isolato, si possono commettere errori, perché non si riesce a vedere il quadro generale.

Adattare i dati alla stagionalità e ad altre tendenze
L'analisi analitica consente di scoprire le tendenze, identificare gli schemi e scoprire la stagionalità. In questo modo è possibile comprendere meglio le prestazioni attuali dell'azienda e il suo potenziale futuro. Questo, a sua volta, vi permette di fare previsioni più accurate che possono informare le vostre azioni future.

Monitorare le prestazioni dei prodotti nel tempo
Il monitoraggio delle prestazioni della categoria di prodotti e dei singoli prodotti nel corso del tempo vi consentirà di scoprire quali sono i maggiori fattori di guadagno e su quali dovreste investire. È un ottimo punto di partenza se volete scoprire quali prodotti stanno dando buoni risultati e quali invece non stanno andando bene come previsto.

Come usare l'ecommerce analytics a beneficio del business

Valutare le tendenze e i pattern di dati in modo da poter fare previsioni accurate.
Le moderne piattaforme di analisi dei dati di e-commerce trattano i dati come un sistema interconnesso, consentendovi di scoprire tendenze e modelli. Le previsioni sono utili per qualsiasi cosa, dalle assunzioni agli obiettivi di vendita, fino a garantire che i prodotti giusti siano accessibili al momento giusto per soddisfare le aspettative dei clienti.

Capire i clienti.
I report sulla crescita, il coinvolgimento e il fatturato aiutano a capire il comportamento dei clienti. Questa conoscenza può informare su quali formati, contenuti e canali attraggono e risuonano con i vostri target demografici. È possibile utilizzare l'analisi dei dati dell'e-commerce per posizionare in modo ottimale i prodotti e supportare il percorso di acquisto dei clienti.

Ottimizzare i prezzi e l'inventario.
Il prezzo dei prodotti è la leva più potente per migliorare la redditività. Con l'analisi dell'e-commerce, potrete avere un quadro granulare di ciò che determina i prezzi per ogni segmento di consumatori. È possibile utilizzare questa conoscenza per scoprire i migliori punti di prezzo a livello di prodotto, piuttosto che di categoria, per ottimizzare i ricavi.

Misurare l'efficacia delle campagne di marketing e di vendita.
L'analisi dei dati può aiutare le aziende di e-commerce a misurare il successo delle loro campagne di marketing, a migliorare il processo decisionale, a ottenere una maggiore trazione omnichannel e a informare i programmi di marketing olistici. È possibile tenere sotto controllo tutte le campagne, dagli annunci sui social alle e-mail al SEO, e vedere le statistiche in tempo reale, in modo da poter reagire rapidamente e utilizzare i dati di marketing per la crescita dell'e-commerce.

Data activation nell'e-commerce

L'attivazione efficace dei dati per un'azienda di e-commerce richiede gli strumenti giusti. Le Customer Data Platform (CDP) consentono di integrare i dati provenienti da CRM, software di posta elettronica, strumenti di automazione del marketing, analisi, registrazioni offline, ecc.

Una CDP consente di visualizzare i dati dettagliati dei clienti e di creare segmenti che corrispondono al pubblico target. Per individuare i segmenti migliori, analizzate i comportamenti degli utenti, la cronologia degli acquisti, gli interessi, i dati demografici e così via.

Esempi di attivazione dei dati sono:

  • Retargeting degli utenti con annunci a cui è più probabile che rispondano.
  • Eseguire un test A/B per vedere quale messaggio, pagina o versione dell'annuncio converte meglio.
  • Mostrare agli utenti contenuti personalizzati in base ai contenuti che hanno visualizzato.
  • Fornire raccomandazioni sui prodotti in base ai prodotti o ai servizi per i quali gli utenti hanno mostrato interesse.
  • Creare percorsi di acquisto unici per diversi tipi di clienti.
  • Inviare campagne e-mail personalizzate in base alla cronologia degli acquisti degli utenti.
  • Integrare i dati web o dell'app sull'attività degli utenti (pagine visitate, ultima attività, obiettivi raggiunti) con un CRM per scoprire e prevenire il potenziale abbandono.

Poiché una CDP è costituita da dati di prima parte, è possibile controllare la provenienza e il trattamento dei dati, permettendovi di allinearvi meglio alle normative sulla privacy.

Conclusioni

In conclusione, l'e-commerce analytics rappresenta un elemento cruciale per il successo delle aziende online, consentendo loro di prendere decisioni informate basate sui dati per migliorare le vendite, la fidelizzazione dei clienti e l'efficacia delle campagne di marketing. Attraverso l'analisi dei dati demografici, di acquisizione, comportamentali e di conversione, le imprese possono comprendere meglio il proprio pubblico, ottimizzare i processi e adattarsi alle tendenze di mercato.

Digital Pills è impegnata nel fornire approfondimenti e soluzioni innovative per l'e-commerce analytics. Come partner di Piwik PRO siamo focalizzati sull'adozione di best practices per garantire la privacy dei dati dei clienti in conformità con le normative in evoluzione.

Se desideri saperne di più su come sfruttare al meglio l'e-commerce analytics per far crescere il tuo business, contattaci cliccando qui. Digital Pills è disponibile per offrire consulenze personalizzate, rispondere alle tue domande e fornirti informazioni dettagliate sui nostri servizi e prodotti. Raggiungi nuovi livelli di successo nell'e-commerce attraverso decisioni informate e strategie mirate.

17 Ottobre 2023

Black Friday 2023: come prepararsi

Il Black Friday, ormai una delle date più cruciali nel calendario del commercio online, si avvicina inesorabile, e con la sua crescente importanza è fondamentale prepararsi adeguatamente per capitalizzare al meglio questo momento dell’anno. 

Il 24 Novembre 2023 offrirà opportunità uniche per aumentare le vendite, acquisire nuovi clienti e migliorare la visibilità del brand.

Questo articolo è un estratto del report gratuito sul Black Friday 2023 in cui esploriamo una serie di best practice e forniamo esempi concreti di analisi per aiutare i marketing manager e gli e-commerce manager a prepararsi al meglio per questo evento. 

1. Allinea strategia e raccolta dei dati

Come dicevamo nell'introduzione, il Black Friday offre un'opportunità straordinaria per aumentare le vendite, attirare nuovi clienti e rafforzare la propria presenza sul mercato. 

Ma per capitalizzare appieno su questa occasione è essenziale avere una strategia ben definita, obiettivi chiari e KPI (Key Performance Indicators) che permettano di monitorare il progresso. 

Non è un caso se questo è il primo consiglio che diamo: senza trattare con la dovuta attenzione questa fase si rischia di non di avere in seguito gli strumenti adeguati a rispondere alla domanda più importante: ‘Come è andato il Black Friday 2023?’

La prima best practice è quindi quella di individuare le persone che lavoreranno al Black Friday o che dovranno monitorare le performance e raccogli obiettivi ed esigenze e intervistarle: chiedi che obiettivi hanno, che cosa vogliono vedere, su che cosa vogliono concentrarsi. Nel report gratuito trovi una lista di domande le cui risposte ti permetteranno di avere una strategia ben definita, un allineamento aziendale e soprattutto dati a disposizione.

2. Brand o prezzo? Segmenta i tuoi utenti

Prima di decidere che cosa promuovere, a chi e in che modo è importante comprendere a fondo i tuoi attuali consumatori e capire a che cosa sono interessati.

Un esempio di iniziativa che abbiamo condotto su un nostro cliente in preparazione al Black Friday è stata una analisi del comportamento di acquisto e della ricerca dei prodotti dei clienti dell’ecommerce, con l’obiettivo di comprendere come fosse composta la base utenti e se fossero necessarie particolari segmentazioni nella promozione.

Abbiamo identificato 4 cluster di utenti e questa segmentazione ha permesso al nostro cliente di identificare strategie diverse per ognuno di loro, oltre ad ottenerne una conoscenza approfondita.

All'interno del report trovi il dettaglio delle analisi.

3. Prodotti: cosa puoi migliorare?

Un altro esempio di attività in preparazione del Black Friday sono analisi sulle performance dei prodotti.

In particolare, risulta utile confrontare i dati sui prodotti visti e sui prodotti aggiunti al carrello, identificando punti di possibile ottimizzazione.

Una visualizzazione di questo tipo per esempio permette di comprendere come sono distribuiti i prodotti all’interno del sito in base al numero di volte che vengono visualizzati e al numero di volte che vengono aggiunti al carrello. Sull’asse delle X vediamo le visualizzazioni, mentre sull’asse delle Y vediamo gli add to cart.

Nel nostro report proponiamo un’analisi di confronto tra i prodotti molto visti e poco aggiunti al carrello e tra i prodotti meno visti ma aggiunti al carrello più spesso.

4. Utenti attivi: come averne di più

Il Black Friday, tradizionalmente associato a sconti e acquisizione di nuovi clienti, offre anche un'opportunità strategica significativa per la riattivazione di clienti esistenti e inattivi.

I clienti inattivi o a rischio sono una categoria di clientela che ha già dimostrato interesse nel marchio o nei prodotti in passato: potrebbero aver perso interesse per un periodo, ma il Black Friday offre l'opportunità di rianimarlo.

Per un cliente e-commerce con modalità di vendita a subscription mensile abbiamo analizzato i dati transazionali dell’ultimo anno, costruendo un data model che consentisse di categorizzare gli utenti nelle diverse tipologie di segmenti. Abbiamo poi realizzato una dashboard per permettere la visualizzazione di questi cluster e dei movimenti degli utenti attraverso le diverse categorie per monitorare la retention.

5. Considera l’intera user journey

Uno degli aspetti critici del Black Friday è il controllo delle performance delle campagne pubblicitarie, garantendo che il budget venga utilizzato in modo ottimale. Purtroppo, i tradizionali modelli di attribuzione spesso presentano limitazioni, essendo o parziali o poco specifici. 

In risposta a questa sfida, abbiamo sviluppato un modello di attribuzione che abbraccia l'intero percorso dell'utente anziché concentrarsi solo sulla fase finale. Questo approccio ci consente di riconoscere il valore di ciascuna campagna e canale nel processo di conversione, offrendo una visione più completa e precisa dell'impatto delle nostre attività di marketing.

Se vuoi vedere gli esempi pratici, capire come puoi usare questo tipo di analisi e che impatto potrebbero avere nella tua strategia scarica il nostro report gratuito, lo trovi qui.

6 Settembre 2023

Privacy Sandbox: una soluzione alla dismissione dei cookie di terza parte?

Come ormai è noto, Google ha pianificato la totale dismissione dei cookie di terza parte sul proprio browser Chrome a partire dal Q3 del 2024 (seguendo la linea già intrapresa dalla maggior parte dei browser presenti sul mercato tra cui i più noti Firefox, Safari, Edge). Nonostante questo annuncio, procrastinato ormai da diverso tempo, possa rappresentare una tematica piuttosto tecnica da comprendere per i non esperti del settore, le sue ripercussioni saranno notevoli e impatteranno il modo in cui tutti noi fruiremo dei contenuti online in futuro.

In un mondo in cui la protezione dei dati personali degli utenti è diventato a tutti gli effetti un tema prioritario, la necessità di garantire la sicurezza e la privacy degli utenti online è diventato un requisito fondamentale.

L’utilizzo dei cookie di terza parte permette agli advertiser di tracciare l’attività sul web degli utenti che si muovono tra diversi siti (tecnica nota come cross-site tracking), permettendo un’integrazione di dati tale da essere sfruttata per attività di marketing mirate.

E’ facile dunque intuire quanto la scomparsa dei cookie di terza parte impatterà 

l’industria dell’advertising online che necessita di trovare una valida alternativa per poter continuare a perseguire i propri obiettivi.

Per questo motivo Google si sta muovendo, già da diverso tempo, per trovare una soluzione: l’iniziativa è stata denominata The Privacy Sandbox, il cui obiettivo è quello di creare una nuova tecnologia che permetta ai siti web di continuare a svolgere attività di marketing mirato online, limitando il più possibile tecniche di tracciamento invasive e garantendo la privacy degli utenti. The Privacy Sandbox è un progetto collaborativo che permette a chiunque di avanzare proposte e fornire feedback; è possibile seguirne gli sviluppi e saperne di più andando sul relativo blog.

A partire da metà agosto 2023 le features fin qui sviluppate all’interno del Privacy Sandbox, sono state abilitate globalmente su tutti i browser Chrome (versione 116) in modo da poter essere testate adeguatamente e con sufficiente anticipo rispetto alla roadmap prevista.

Tra le molteplici iniziative, ecco quelle che saranno alla base dei nuovi meccanismi di advertising online e di misurazione delle loro performance:

  • Topics API: permette di associare una label di alto livello a ciascun sito web in base al proprio contesto (Sport, Cucina, ecc..) e salvare su ciascun browser le label più ricorrenti in base alla navigazione dell’utente. In questo modo l’informazione è utilizzabile per proporre pubblicità più vicine agli interessi dell’utente.

Il numero di label possibili è limitato e non è possibile sfruttare label relative a categorie sensibili come orientamento sessuale, religione, razza o altre ancora.

  • Protected Audience API: permette al browser dell’utente di iscriversi a dei gruppi di interesse sulla base dei contenuti fruiti sul web. Proprio questi gruppi di interesse sono utilizzati poi da un algoritmo che permette al browser di lanciare un’asta tra le diverse proposte di pubblicità per l’utente e mostrare infine quella più coerente e remunerativa.
  • Attribution Reporting API: abilita la misurazione delle performance delle attività di advertising senza che vengano condivise informazioni di navigazione dell’utente. Permette dunque di ottenere due tipologie di report:
    • Event-level report: permette di valutare l’efficacia di ogni singola pubblicità mostrando le relative performance in termini di click e view. Le informazioni sono aggregate e viene aggiunta una certa percentuale di rumore alle metriche per garantire una maggior protezione degli utenti.
    • Summary report: permette di valutare l’efficacia delle campagne. Il report è più ricco di informazioni rispetto al precedente e permette di affinare le analisi aggiungendo dettagli aggiuntivi (aree geografiche, valore delle conversioni, ecc..) tuttavia anche qui viene garantita la privacy dell’utente grazie ad un sufficiente livello di aggregazione dei dati.

Nonostante i numeri sforzi rimangono dei grossi quesiti sulla possibile trasformazione di queste proposte in veri e propri standard web. Sembra infatti che con gli altri grossi player di mercato (Firefox, Edge) non ci sia ancora stata collaborazione, mentre Safari ha espresso parere negativo proponendo un sistema proprietario e alternativo chiamato Private Click Measurement.

Come si può immaginare, si tratta di soluzioni in evoluzione continua: per questo continueremo a studiare queste soluzioni e a condividere aggiornamenti man mano. Nel frattempo puoi iscriverti alla nostra newsletter per ricevere tutte le novità una volta ogni due settimane nella tua casella o fare una chiacchierata con noi per capire insieme come possiamo aiutarti.

31 Luglio 2023

EU – USA Data Privacy Framework: cosa è successo e cosa aspettarsi

È di poche settimane fa la notizia di un accordo che va a rendere più agevole il trasferimento dei dati tra UE e USA: abbiamo deciso, come sempre, di prenderci il giusto tempo prima di condividere la notizia e rispondere alle domande ricevute in questo periodo.

Questa volta ci siamo rivolti al nostro partner Argo Business Solutions, società specializzata in privacy e data protection e nel supporto alle aziende nelle procedure di adeguamento al Regolamento UE “GDPR”.

1. Dove eravamo rimasti e perché siamo arrivati al Data Privacy Framework?

Chi nell’ambito della sua vita professionale si è imbattuto negli ultimi anni nell’annosa questione del trasferimento dei dati personali dall’Unione Europea verso gli Stati Uniti d’America, magari utilizzando tool e strumenti di Google o di altri provider americani, si sarà sentito decisamente sperduto e confuso. Il tema è molto tecnico e fa impazzire anche chi lavora nel settore della data protection. Proviamo a spiegare il tutto in maniera semplice, accessibile e in maniera schematica:

  1. Il Regolamento UE 2016/679 (“GDPR”) disciplina il trattamento dei dati personali nell’Unione Europea;
  2. Il GDPR vieta trasferimenti, salvo adottare specifici accorgimenti, verso Paesi extra UE considerati “non adeguati”;
  3. Per svariate ragioni (in primis l’iperattività dell’intelligence americana), gli USA sono considerati un Paese non adeguato da parte della Commissione Europea;
  4. Moltissimi strumenti che utilizziamo nell’ambito della nostra vita professionale, offerti da provider che sono leader di mercato, operano trasferimenti di dati verso gli USA;
  5. UE e USA hanno più volte cercato di disciplinare e regolare il trasferimento dei dati personali ma le soluzioni in precedenza trovate sono state invalidate da diversi interventi della Corte di Giustizia dell’Unione Europea, attivata a seguito delle battaglie di un gruppo di attivisti capitanati dall’austriaco Max Schrems.

Visto e considerato quanto sopra, i DPO e i consulenti privacy delle aziende sono spesso consultati per trovare delle soluzioni, spesso non semplici, sia tecniche che giuridiche all’annoso problema. 

Il Componente del Garante per la Protezione dei Dati Personali, Guido Scorza, dichiarò a Repubblica nel giugno dello scorso anno:

«Il vero nodo non si può sciogliere a valle, ma a monte. Significa passare dall’impegno politico che a marzo Joe Biden e Ursula von der Leyen hanno preso per uniformare l’allineamento americano a quello comunitario, rendendo semplice e legittimo il trasferimento dei dati agli Stati Uniti. Quello che manca a quell’accordo politico è un accordo giuridicamente vincolante. Noi stiamo giocando di supplenza, in un tratto specifico della filiera, legata a un singolo episodio: ma il problema è molto più ampio». 

Ora quell’accordo c’è. Infatti, l’ultimo tentativo di UE e USA di rendere più agevoli i trasferimenti di dati personali si chiama “Data Privacy Framework”

2. In cosa consiste il Data Privacy Framework? 

Il Data Privacy Framework nasce, come abbiamo detto, da un accordo politico tra il presidente USA Biden e la Presidente della Commissione UE Ursula von der Leyen. Senza entrare troppo nei dettagli tecnici (potremmo parlare per ore di Data Protection Review Court (DPRC) e della decisione di adeguatezza della Commissione), il DPF prevede, tra le varie cose, un meccanismo di certificazione con adesione volontaria. Gli aderenti devono rinnovare la certificazione ogni anno. Chi si certifica deve garantire il rispetto di numerosi requisiti (es. informativa, scelta, accountability sui trasferimenti ulteriori, misure di sicurezza, ecc.).

Le aziende USA già certificate al precedente “Privacy Shield” (uno degli strumenti invalidati in precedenza dalla Corte di Giustizia UE), diventano automaticamente certificate ai sensi del DPF, se aggiornano le loro policy entro il 10 ottobre 2023, ma possono da subito fare affidamento sul DPF. Al seguente link è presente l’elenco delle società certificate: https://www.dataprivacyframework.gov/s/participant-search 

Insomma, prima di trasferire dati verso una determinata azienda negli USA, è necessario effettuare un controllo sul sito.  


3. Possiamo tirare un sospiro di sollievo?

Nel breve periodo sì. Il DPF rende molto più semplice, dal 10 luglio 2023, per le aziende UE (e per i loro consulenti e DPO) trovare adeguate garanzie per il trasferimento dei dati verso specifiche aziende americane certificate o aziende che trasferiscono dati verso gli USA. 

4. Che cosa ci possiamo aspettare per il futuro? Cambieranno di nuovo le carte in tavola?

Abbiamo usato il termine “nel breve periodo”, nella risposta precedente, dal momento che rimangono all’orizzonte molte incognite. In primis, Max Schrems ha paventato nuove azioni che potrebbero nuovamente condurre il DPF di fronte alla Corte di Giustizia dell’Unione Europea.

Inoltre, la decisione di adeguatezza sarà riesaminata dalla Commissione Europea fra un anno. Qualora vi fossero sviluppi che mettano a rischio il livello di protezione dei dati personali, la Commissione potrebbe addirittura ritirare la decisione di adeguatezza.

In ogni modo, al momento è impossibile immaginare percentuali precise per ogni scenario.

5. Consigli e best practice?

Attualmente, è necessario attivare il proprio consulente privacy e/o il proprio DPO per passare in rassegna tutti i propri responsabili e sub-responsabili che operano trasferimenti di dati verso gli USA, verificando l’eventuale certificazione sul sito del DPF.

Un consiglio è quello di continuare, in ogni caso, ad affidarsi alle Clausole Contrattuali Standard, soprattutto nei contratti pluriennali, che possono tutelarci qualora il DPF venisse invalidati dalla Corte di Giustizia UE o venisse ritirato dalla Commisione Europea. Insomma, conviene aspettarsi il meglio ma prepararsi, in ogni caso, al peggio.

Hai altre domande? Compila questo form per parlare con i consulenti di Argo e Digital Pills:

24 Luglio 2023

Modelli di attribuzione personalizzati data-driven: come usare i dati per ottimizzare il budget

In poche parole

Con l'imminente dismissione dei cookie di terza parte e le crescenti limitazioni in ambito privacy le aziende si trovano di fronte a una diminuzione significativa dei dati disponibili, rendendo più difficile analizzare il comportamento degli utenti in modo accurato e prendere decisioni informate sulla pubblicità e sul marketing.

Un'altra conseguenza di queste limitazioni è la perdita di efficacia nell'attribuzione delle conversioni e la difficoltà nel valutare il ritorno sull'investimento (ROI) dei canali di marketing. Questo rende essenziale l'uso dei dati per comprendere come indirizzare in modo efficace gli investimenti sia a livello di budget sia a livello di flussi di conversione.

La soluzione che propone Digital Pills è l'adozione di modelli di attribuzione personalizzati e data-driven, che tengano conto di tutte le interazioni degli utenti lungo il percorso di conversione. Attraverso un algoritmo di machine learning predittivo, viene assegnato uno scoring alle diverse azioni dell'utente, permettendo di valutare l'efficacia di ciascun canale pubblicitario in base ai dati reali e alle performance osservate.

Questo approccio "super partes" consente alle aziende di ottenere una visione più accurata delle performance dei canali di marketing e di prendere decisioni basate sui dati per ottimizzare le strategie pubblicitarie e di investimento.

Addio cookie di terza parte e altre limitazioni

Le restrizioni dei browser, gli adblocker e la dismissione progressiva dei cookie di terza parte stanno avendo un impatto significativo sul modo in cui le aziende raccolgono, tracciano e utilizzano i dati per le loro strategie di advertising. 

In particolare molti browser popolari stanno implementando restrizioni sui cookie di tracciamento di terze parti e su altre tecnologie di monitoraggio. Come puoi vedere dall’immagine qui sotto si tratta di un percorso che è iniziato parecchi anni fa e che vedrà il suo culmine probabilmente nel 2024 con l’eliminazione da parte di Chrome dei cookie di terza parte.

Queste crescenti restrizioni portano ad alcune inevitabili conseguenze:

Meno dati di traffico per analizzare il comportamento degli utenti.
I cookie di terza parte vengono utilizzati per raccogliere dati sulle interazioni degli utenti con siti web e applicazioni al di fuori del dominio principale che stanno visitando e sono preziosi per gli inserzionisti, poiché consentono di seguire il percorso dell'utente attraverso diversi siti, capire interessi e comportamenti e identificare opportunità di remarketing. Con la limitazione o il blocco dell'uso dei cookie di terze parti, le aziende vanno incontro ad una diminuzione significativa dei dati di traffico provenienti da utenti non autenticati. Ciò può rendere più difficile analizzare il comportamento degli utenti in modo completo e accurato, riducendo la qualità delle informazioni disponibili per prendere decisioni informate sulla pubblicità e sul marketing.

Perdita di efficacia e attendibilità dell’attribuzione delle conversioni e difficoltà nel valutare il ritorno sull’investimento dei canali.
Con queste limitazioni le aziende avranno sempre più difficoltà a identificare con precisione quali canali di marketing stanno generando conversioni e a valutare il ritorno sull'investimento (ROI) di ciascun canale.
Senza una valutazione accurata del ROI, le aziende potrebbero sprecare risorse preziose su strategie poco performanti, prendere decisioni di marketing poco precise e a valutare approssimativamente l’efficacia delle campagne.


Quello che ne deriva è una esigenza da parte di chi si occupa di growth e acquisizione di usare i dati per capire come direzionare nel modo più efficace possibile gli investimenti, sia a livello di budget, sia a livello di flussi di conversione.

La maggior parte dei business digitali non ha una customer journey immediata, che è il motivo per cui molti investono in campagne digitali che hanno obiettivi di awareness e consideration, prima ancora che di conversion.

Ed è qui che nasce il problema: come attribuire un valore a quelle campagne che contribuiscono di certo alla conversione ma a cui, attraverso modelli di attribuzione standard, non viene riconosciuto nessun contributo?


Detto ancora meglio, da una Growth Manager con cui lavoriamo:

“Io ho tante campagne di awareness a cui secondo il modello last click in GA4 non vengono attribuite le conversioni, che però sono il punto di ingresso di una conversione che arriva successivamente. Ho bisogno di capire come ogni canale contribuisce alla conversione in real time perché ho necessità di essere veloce e meticolosa nelle scelte di budget.”

Necessità di un modello super partes

Ogni piattaforma di advertising e analisi ha il proprio modello di attribuzione, che determina come vengono assegnati i meriti alle diverse interazioni o touchpoint che un utente ha avuto prima di effettuare una conversione (ad esempio, un acquisto). Questi modelli di attribuzione possono variare notevolmente da una piattaforma all'altra - e spesso sono progettati per favorire quella stessa piattaforma.

Se ciascuna piattaforma attribuisce il merito delle conversioni alle proprie interazioni pubblicitarie, rende difficile confrontare in modo accurato le performance tra le diverse piattaforme: questa discrepanza può portare a conclusioni errate sulla redditività dei canali pubblicitari e sulla distribuzione del budget.

Sta emergendo sempre più chiaramente la necessità di avere un approccio "super partes" e basato sui dati: un modello di attribuzione che consideri tutte le interazioni che un utente ha avuto lungo il percorso di conversione, tenendo conto di ciò che avviene prima della conversione. 

Quello di cui c’è bisogno è un modello che valuti l'efficacia di ciascun canale pubblicitario in base ai dati reali e alle performance osservate, piuttosto che affidarsi a regole predefinite o a modelli di attribuzione preconfezionati.

La soluzione: modello di attribuzione personalizzato data-driven

Nel momento in cui ci sono in atto crescenti limitazioni sulla possibilità di raccogliere e utilizzare una serie di dati e in cui ogni piattaforma ha un modo diverso di considerare l’attribuzione, la soluzione è creare modello attribuzione personalizzato che sia al 100% data-driven.

Invece che partire da formule standard incapaci di valutare performance di campagne che non portano direttamente alla conversione, abbiamo sviluppato una soluzione che riparte dalle singole azioni che l’utente fa sul sito.

Tutto parte da una semplice domanda: qual è il peso che ciascuna azione ha nel processo che porta alla conversione?

Grazie ad una mappatura iniziale identifichiamo, attraverso un algoritmo di machine learning predittivo, una serie di eventi che sono correlati positivamente (ad esempio visualizzazione immagini prodotto, aggiunta carrello) e negativamente (es. registrazione garanzia) all’acquisto, fornendo loro uno scoring: quanto le azioni contribuiscono da 1 a 10 alla conversione?

Ad esempio, posto che la conversione, come ad esempio l’acquisto, avrà uno score di 10 (ovvero il valore massimo), l’algoritmo potrebbe assegnare ad esempio uno score di 3 al click sulle immagini e di 8 all’aggiunta al carrello.


In seguito, verrà assegnato un punteggio alle singole sessioni, sulla base delle azioni effettuate dagli utenti. Le sessioni vengono poi raggruppate secondo le classiche configurazioni (canale, sorgente, mezzo, campagna).  

Questo tipo di modello implica un modo diverso di guardare all’attribuzione: non si attribuisce ad un singolo canale il valore di una conversione, ma un peso sulla base delle interazioni. Ad esempio, se l’utente non converte nella sessione, ma fa delle azioni che hanno una correlazione positiva con l’obiettivo scelto (es. acquisto) viene assegnato comunque un punteggio alle sessioni provenienti da quel canale, che può essere alto o basso sulla base della correlazione con il goal.

Facciamo un esempio: immaginiamo di avere il seguente journey: 

  • Primo touchpoint Meta, con visualizzazione gallery
  • Secondo Touchpoint Linkedin, con aggiunta prodotto al carrello 
  • Terzo Google Ads, con acquisto

Con un modello di attribuzione standard last click non direct in GA4 vedremo attribuito il peso della conversione al 100% a Google Ads, rischiando di arrivare alla conclusione errata che gli altri canali non abbiano contribuito in maniera efficace alla conversione.

La nostra soluzione, invece, ci dà informazioni sul valore, il punteggio appunto, che hanno i singoli canali.
Possiamo andare ad analizzare gli score delle sessioni in questo modo:
- Meta: session score 3, perché è stato fatto un click sulle immagini
- Linkedin: session score 8, perché c’è stata l’aggiunta al carrello
- Google Ads: session score 10, perché è stato effettuato il purchase

Con questo modello è possibile comprendere in che modo ogni canale abbia contribuito a portare alla conversione in modo da poter prendere decisioni su dove investire di più e dove investire di meno, decisioni davvero data-driven.


Ok, ma in che cosa consiste?


Forniamo al team marketing una dashboard in cui controllare in real time lo scoring dei canali e delle singole campagne, adatta ad analisi settimanali per l'ottimizzazione del budget e perfetta per poter intervenire tempestivamente in caso di canali e campagne poco performanti.

In questa pagina trovi tutte le informazioni sulla nostra soluzione, se vuoi parlarne con noi clicca qui sotto:

16 Giugno 2023

Mixpanel Marketing Analytics

Mixpanel permette da ora solide funzionalità di marketing analytics, consentendo ai team di marketing e growth di raccogliere informazioni sui canali di acquisizione e di collaborare con i team di prodotto su un funnel completo dell’user journey.

Mixpanel è stato lanciato più di dieci anni fa come strumento di analisi per i team di prodotto.
Ma più della metà dei suoi clienti fa parte di team di marketing per due motivi:

  • I team di prodotto e di marketing devono collaborare molto strettamente per promuovere la crescita, soprattutto quando l'obiettivo è la crescita guidata dal prodotto. Per questo è importante utilizzare lo stesso strumento di analisi.
  • Gli strumenti di analisi di marketing tradizionali sono stati costruiti solo per il web, ma i canali di marketing si sono evoluti. Il modello di dati basato sugli eventi di Mixpanel aiuta gli addetti al marketing ad analizzare gli infiniti dati comportamentali degli utenti, dagli annunci agli acquisti sui vari canali, e l'efficacia delle campagne per coorti.

Proprio per andare incontro a queste necessità Mixpanel lancia Mixpanel Marketing Analytics, che include diverse nuove funzionalità che consentono di supportare una solida analisi di marketing fin dall'inizio. 

Queste aggiunte rendono più facile per i team di marketing ottenere tutti gli insight per guidare la crescita attraverso i canali in evoluzione di oggi e collaborare con i team di prodotto su un funnel completo del viaggio dell'utente.

Cosa c'è di nuovo in Mixpanel?

Per rendere Mixpanel più potente per i team di marketing, hanno aggiunto la visualizzazione di tabelle di dati, l'analisi dell'attribuzione multi-touch (ora in beta), la risoluzione delle identità, i bucket personalizzati per raggruppare i dati demografici e il comportamento degli utenti, il supporto dei dati delle reti pubblicitarie per comprendere l'efficacia delle campagne e l'integrazione con un sistema molto amato da sviluppatori e marketer: Google Tag Manager.

Queste caratteristiche suoneranno familiari a chiunque abbia utilizzato strumenti di analisi web tradizionali come Google Analytics. Ma in Mixpanel sono disponibili in un design più bello e facile da usare e possono essere sfruttate per ottenere un'analisi più ricca dell'intero percorso dell'utente. In questo modo è possibile unire i dati di attribuzione con quelli relativi al coinvolgimento nel prodotto, in modo da capire quanto siano preziosi i canali di acquisizione per portare clienti sani.

Tutte le nuove funzionalità sono disponibili su qualsiasi piano, da quello gratuito a quello Enterprise. Mixpanel diventa quindi uno strumento di analisi per soddisfare le esigenze della maggior parte dei team di marketing e di growth di oggi. 

Ma il lancio di Mixpanel Marketing Analytics è molto più di una semplice raccolta di nuove funzionalità; è un impegno a continuare ad aggiungere potenza e funzionalità per diventare essere lo strumento di riferimento per i team di marketing e growth

Mixpanel adesso può gestire facilmente metriche del sito come il bounce rate delle sessioni, la loro durata media e quali pagine hanno performance migliori. Tutto ciò è tracciato automaticamente grazie agli eventi. Tramite la personalizzazione avanzata si può modificare la definizione di sessione, incluse le proprietà da catturare, in modo tale da adattarsi al meglio alle proprie esigenze. 

Analisi dell’intero user journey

Un requisito fondamentale per ricostruire l’intero user journey, poter unire dati di utenti identificati (post-login) e dati anonimi degli stessi utenti (pre-login), inclusi i canali con cui interagiscono prima del sito. Implementando le nuove funzionalità di Mixpanel Marketing Analytics con una solida base di product analytics permette di rispondere a tutte le domande necessarie per arrivare a costruire la miglior esperienza utente possibile. Nello specifico, andando ad implementare la funzionalità di ID Merge, si possono unire dati, prima e dopo il login e su tutti i dispositivi da cui l’utente ha interagito, in un unico flusso di dati per utente.

Con l'attribuzione multi-touch (in beta), è possibile identificare quali canali sono i più efficaci nel generare engagement e conversioni nel prodotto. La capacità di guardare a più touchpoint fornisce un input ricco andando a considerare tutti i canali. Inoltre, la capacità di integrare i dati sulle prestazioni degli annunci come la spesa per gli annunci, i click e le impressioni in Mixpanel rende possibile calcolare una metrica ROAS. Le risposte che si possono ottenere con questa metrica aiutano a indirizzare il budget di marketing verso i canali di acquisizione più a lungo termine.

Analytics per tutti

Rendere più facile per i marketer e i team di growth abbracciare Mixpanel è solo un altro modo attraverso cui Mixpanel persegue la sua value proposition: abbassare la barriera d'ingresso per l’accesso e l’analisi dei dati per tutti i team digital.

Se vuoi saperne di più abbiamo in programma un webinar in collaborazione con Mixpanel il 28 giugno 2023, in cui parleremo di come sfruttare al massimo lo strumento per comprendere e analizzare l’intero user journey.

I nostri webinar sono gratuiti con posti limitati, puoi iscriverti qui: https://www.digitalpills.it/webinar-mixpanel





























Come Mixpanel Marketing Analytics sblocca l’analisi del user journey

Grazie all'incorporazione di marketing analytics e product analytics in Mixpanel, i rispettivi team saranno in grado di lavorare insieme per costruire e analizzare l'esperienza utente del prodotto digitale

Dopo aver costruito nel corso degli anni un posizionamento sulla product analytics, Mixpanel ha completato l'offerta con una soluzione dedicata al team marketing, in modo da offrire ai clienti la possibilità di ottenere una visione olistica della customer experience digitale.

Come appare il percorso utente completo in Mixpanel

Attivare gli utenti che trarranno il massimo valore dal tuo prodotto richiede molti passi, e molti step, prima della registrazione. Per far fronte a questo, bisogna aumentare il giusto tipo di consapevolezza e curiosità attraverso la mira con annunci pubblicitari o altri canali e fornire poi un contenuto efficace sul sito web una volta che i potenziali utenti arrivano.

Incorporando le nuove funzionalità di Marketing Analytics di Mixpanel con una solida base di analisi del prodotto, si possono ottenere risposte su tutto quanto sopra e altro ancora per aiutare a costruire un'esperienza di percorso utente completo progettata in modo esaustivo.

Costruzione del profilo utente completo per ottenere i dati più ampi relativi al percorso dell'utente

La vera formula segreta per avere una visione chiara del percorso completo dell'utente consiste nella possibilità di abbinare l'attività identificata dopo il login con quella anonima precedente al login (inclusi i canali con cui gli utenti interagiscono ancora prima di accedere al tuo sito web). Nello strumento è stato semplificato questo processo con l'ID Merge, che unisce anche l'attività dello stesso utente su più dispositivi in un'unica e completa attività dell'utente. Mixpanel si integra perfettamente anche con le piattaforme di dati sui clienti più utilizzate come Twilio Segment, per aggiungere ulteriori dati sul profilo alle tue analisi e strategie responsive.

Misura se i tuoi sforzi di targeting dell'utente stanno funzionando a lungo termine

Con l'attribuzione multi-touch (in beta), è possibile identificare quali canali sono i più efficaci nel generare engagement e conversioni nel tuo prodotto. La capacità di guardare a più touchpoint fornisce un input più ricco considerando tutti i canali, indipendentemente che siano diretti o assistiti. Inoltre, la capacità di integrare i dati sulle prestazioni degli annunci come la spesa per gli annunci, i clic e le impressioni in Mixpanel rende possibile calcolare una metrica ROAS (ritorno sulla spesa per gli annunci). Le risposte che si possono ottenere con questa metrica aiutano a indirizzare il budget di marketing verso i canali di acquisizione più a lungo termine.

Il sito web è un'estensione del prodotto, analizzalo in questo modo

I nuovi aggiornamenti per il tracciamento delle sessioni e il tracciamento automatizzato delle visualizzazioni delle pagine aiutano a progettare un sito web aziendale che lascia un'impressione significativa e fornisce dati solidi sui comportamenti degli utenti da inserire nel funnel del percorso dell'utente. Mixpanel ora può gestire facilmente le metriche del sito web come il tasso di rimbalzo della sessione, la durata media della sessione e quali pagine stanno performando meglio, tutte automaticamente tracciate come eventi con soli due righe di codice. Un passo avanti, anche le personalizzazioni avanzate che consentono anche di modificare la definizione di sessione dell'utente, inclusi quali proprietà acquisire, per adattarla al meglio ai casi d'uso personalizzati e al contesto del prodotto collegato.

Identificazione dei segmenti di utenti più fruibili per strategie di marketing più efficaci

Sono state anche rilasciate nuove funzionalità per riunire tutti i comportamenti del percorso dell'utente per creare analisi fruibili: tabelle , bucket personalizzati e visualizzazione degli utenti. Con le tabelle, è possibile comprendere lo stato generale di ogni segmento di utenti in un'unica vista, come monitorare le visite totali al sito web, le iscrizioni, gli acquisti, le entrate e il CAC (costo di acquisizione) per ogni regione. Con i bucket personalizzati, è possibile unire al volo i tuoi utenti in gruppi significativi, come i Millennial e la Generazione Z. Con la visualizzazione degli utenti, si ingrandiscono fino in fondo per vedere chi sono gli utenti esatti che contribuiscono a cali o picchi e raggrupparli insieme . Per mettere in atto l' analisi, si spingono questi segmenti sulle numerose piattaforme di coinvolgimento con cui Mixpanel si integra (Twilio, Google Ads, Facebook Ads, ecc.) e si alimentano i cicli di acquisizione e crescita.

Da Digital Pills siamo partner Ufficiali di Mixpanel. Le funzionalità di cui sopra sono solo l'inizio!

Nei prossimi mesi, pubblicheremo molto di più per aiutarti ad analizzare meglio la tua acquisizione e crescita insieme al comportamento del tuo prodotto da parte dell'utente. Rimani sintonizzato e contattaci per maggiori informazioni!

NON PERDIAMOCI DI VISTA
VUOI RICEVERE AGGIORNAMENTI?
SEGUICI SUI SOCIAL

Copyright 2024, Digital Pills SRL
Via Stampatori 4, 10122 | Torino, Italia
P.IVA: IT12183450019

unnamed-3

Certificato n. 2728 QM